HCA 4h Welding Team


Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces. 

The history of joining metals goes back several millennia, called forge welding, with the earliest examples of welding from the Bronze Age and the Iron Age in Europe and the Middle East. The ancient Greek historian Herodotus states in The Histories of the 5th century BC that Glaucus of Chios "was the man who single-handedly invented iron-welding." Welding was used in the construction of the iron pillar in Delhi, India, erected about 310 AD and weighing 5.4 metric tons.

The Middle Ages brought advances in forge welding, in which blacksmiths pounded heated metal repeatedly until bonding occurred. In 1540, Vannoccio Biringuccio published De la pirotechnia, which includes descriptions of the forging operation. Renaissance craftsmen were skilled in the process, and the industry continued to grow during the following centuries.

In 1802, Russian scientist Vasily Petrov discovered the electric arc and subsequently proposed its possible practical applications, including welding. In 1881–82 a Russian inventor Nikolai Benardos created the first electric arc welding method known as carbon arc welding, using carbon electrodes. The advances in arc welding continued with the invention of metal electrodes in the late 1800s by a Russian, Nikolai Slavyanov (1888), and an American, C. L. Coffin (1890). Around 1900, A. P. Strohmenger released a coated metal electrode in Britain, which gave a more stable arc. In 1905 Russian scientistVladimir Mitkevich proposed the usage of three-phase electric arc for welding. In 1919, alternating current welding was invented by C. J. Holslag but did not become popular for another decade. 

Welding can be dangerous and unhealthy if the proper precautions are not taken. However, with the use of new technology and proper protection, risks of injury and death associated with welding can be greatly reduced. Since many common welding procedures involve an open electric arc or flame, the risk of burns and fire is significant; this is why it is classified as a hot work process. To prevent injury, welders wear personal protective equipment in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat and flames,boots must be made of leather to ensure complete protection from any hot piece of metal. Additionally, the brightness of the weld area leads to a condition called arc eye or flash burns in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Goggles and welding helmets with dark UV-filtering face plates are worn to prevent this exposure. Since the 2000s, some helmets have included a face plate which instantly darkens upon exposure to the intense UV light. To protect bystanders, the welding area is often surrounded with translucent welding curtains. These curtains, made of a polyvinyl chloride plastic film, shield people outside the welding area from the UV light of the electric arc, but can not replace the filter glass used in helmets. Safety glasses specifically must be worn at all times while in the shop to prevent sharp particles from flying into the pupil of the eye which could lead to temporary or permanent blindness. 

Welders are often exposed to dangerous gases and particulate matter. Processes like flux-cored arc welding and shielded metal arc welding produce smoke containing particles of various types of oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. This is due to the fact that smaller particles have the ability to cross the blood brain barrier. Fumes and gases, such as carbon dioxide, ozone, and fumes containing heavy metals, can be dangerous to welders lacking proper ventilation and training. Exposure to manganese welding fumes, for example, even at low levels (<0.2 mg/m3), may lead to neurological problems or to damage to the lungs, liver, kidneys, or central nervous system. The use of compressed gases and flames in many welding processes poses an explosion and fire risk. Some common precautions include limiting the amount of oxygen in the air, and keeping combustible materials away from the workplace. As we can see welding can be a fun but very serious skill that should never be taken lightly.